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Abstract: This article introduces a singleton type-1 fuzzy logic system (T1-SFLS) controller and 

Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an 

unknown static and dynamic environment. The WDO (Wind Driven Optimization) algorithm is used 

to optimize and tune the input/ output membership function parameters of the fuzzy controller. The 

WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels 

navigates over an N-dimensional search domain. The performance of this proposed technique has 

compared through many computer simulations and real-time experiments by using Khepera-III 
mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good 

agreement for mobile robot navigation. 
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I. INTRODUCTION 
‘Path planning and control’ of an autonomous mobile robot in an unknown dynamic environment is 

one of the most challenging jobs. Fuzzy logic is a mimic of human behavior, which easily han- dles the 

system uncertainty. One of the most cited methods in the field of the mobile robot is the fuzzy logic. Soft 

computing tech- niques such as fuzzy logic [1], neural network [2], neuro-fuzzy [4] and nature-inspired 

algorithms (Genetic Algorithm [8], Particle Swarm Optimization [12,13], Ant Colony Algorithm [10,11], 

Simu- lated Annealing Algorithm [14,15], Bacterial Foraging Optimization [5]) are widely used for mobile 
robot navigation. However, each method (algorithm) has its strengths and weaknesses. 

The motion control problem of an autonomous wheeled mobile robot has been widely 

investigated in past two decades. Abadi and Khooban [1] have introduced Mamdani-type fuzzy logic 

controller integrated with random inertia weight Particle Swarm Optimiza- tion (RNW-PSO) for optimal 

path tracking of wheeled mobile ro- bots (WMRs). Algabri et al. [2] have combined the fuzzy logic 

withother soft computing techniques such as Genetic Algorithm (GA), Neural Networks (NN), and 

Particle Swarm Optimization (PSO) for optimizing the membership function parameters of the fuzzy 

controller to improve the navigation performance of the mobile robot. A comparative study between 

two soft computing ap- proaches, namely genetic-fuzzy and genetic-neural and the con- ventional 

potential field method have been designed and developed by Hui and Pratihar [3] for an adaptive 

navigation planning of a car-like mobile robot moving in the presence of some dynamic obstacles. 

Pothal and Parhi [4] have proposed the sensor based Adaptive Neuro Fuzzy Inference System (ANFIS) 
controller for navigation of single and multiple mobile robots in the highly cluttered environment. 

Montiel et al. [5] and Hossain et al. [6] have explored the application of Bacterial Foraging 

Optimization (BFO) method in the field of mobile robot navigation to find out the shortest possible path 

within the minimum time to move from any start position to the goal position in an unknown environment 

between moving obstacles. Baturone et al. [7] have designed the low-cost embedded neuro-fuzzy 

controller for safe and collision-free navigation of an autonomous car-like robot among possible obstacles 

toward a goal configuration. Ming et al. [8] have designed a genetic algorithm to select the best 

membership functions from the fuzzy system to control a mobile robot in the partially unknown 

environment. Liang et al. [9] have presented the kinematic modeling of the two- wheeled differential drive 

mobile robot. Purian and Sadeghian 



Optimum path planning of mobile robot in unknown static and dynamic environments .. 

www.ijceronline.com                                                Open Access Journal                                                   Page 2 

[10] have explored the optimal path for a mobile robot in an un- known environment using Ant Colony 

Optimization (ACO) algorithm. 

To prepare an optimal intelligent controller for an autonomous wheeled mobile robot, the Castillo 

et al. [11] have designed the hybridization of an ACO algorithm and the PSO algorithm to opti- mize the 

membership function of a fuzzy controller. Chung et al. 

[12] have developed PSO and fuzzy control algorithm to navigate the robot in the unknown 

environment. Allawi and Abdalla [13] have proposed the sensor based PSO-fuzzy model for the naviga- 
tion of multiple mobile robots. Where, the PSO is used to determine the optimal input/output membership 

functions and the optimal rules for the fuzzy type-2 controllers. Yanar and Akyurek [14] have proposed the 

use of simulated annealing metaheuristic algorithm for tuning the Mamdani type fuzzy models. Martinez-

Alfaro and Gomez-Garcia [15] have developed the simulated annealing and fuzzy logic for generating an 

automatic path planning of the mobile robot. Mohanty and Parhi [20] have combined the cuckoo search 

algorithm with ANFIS for optimizing the navigation path length of mobile robots. Wong et al. [21] have 

used the PSO algorithm to tune the parameters of the membership function. 

One major problem with the fuzzy logic is the difficulty of constructing and tuning the correct 

membership function grade [22]. Therefore, the authors have tried to attempt to solve this problem by 

using WDO algorithm. In this article, a Fuzzy-WDO hybrid algorithm has been presented for mobile robot 

navigation and collision avoidance in an unknown static and dynamic envi- ronment. The WDO is 
integrated with the fuzzy controller to adjust and optimize the antecedent and consequent parameters of the 

generalized bell-shaped membership function. The WDO [16e18] method is a population-based iterative 

heuristic global optimiza- tion algorithm for multi-dimensional and multi-model problems with the 

potential to implement constraints on the search domain. This algorithm works by simultaneously 

maintaining several infinitesimal small air parcels or potential solutions in the search domain. For each 

iteration of the algorithm, each air parcels are evaluated by the membership function parameters (objective 

function) being optimized based on the fitness function of that solution. The primary objective of this 

research is to optimize the membership function parameters of the fuzzy controller by using WDO 

algorithm. 

This article is organized into seven sections. Section 1 presents the introduction and literature 

review. T1-SFLS controller for mo- bile robot navigation is proposed in Section 2. The hybrid fuzzy- 

WDO algorithm for mobile robot navigation is presented in Sec- tion 3. Section 4 demonstrates the 
simulation results of the mobile robot in different environments. Section 5 describes the simulation 

 

 
Fig. 1.  The structure of a T1-SFLS controller for mobile robot navigation. 

 

result comparison with previous works. Section 6 presents the experimental results and 

discussion for validating the proposed controller. Finally, Section 7 depicts the summary. 

 

II. T1-SFLS CONTROLLER FOR THE MOBILE ROBOT NAVIGATION 
In this section, the T1-SFLS rule-based controller has been designed and implemented for mobile robot 
navigation and 
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Fig. 2. Fuzzy membership functions for the inputs (df , dl, and dr ). 

 

 
Fig. 3. Fuzzy membership functions for the outputs (mr , and ml). 
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Table 1  

Fuzzy rules set. 

If (df is Far) and (dl is Far) and (dr is Far) then (mr is High) and (ml is Low) 

If (df is Near) and (dl is Near) and (dr is Near) then (mr is Low) and (ml is High) If (df is Far) and 

(dl is Near) and (dr  is Far) then (mr  is Low) and (ml  is High) If (df is Far) and (dl is Far) and (dr  

is Near) then (mr  is High) and (ml  is Low) If (df is Near) and (dl is Far) and (dr  is Far) then (mr  

is Low) and (ml  is High) If (df is Near) and (dl is Near) and (dr is Far) then (mr is Low) and (ml is 
High) If (df is Near) and (dl is Far) and (dr is Near) then (mr is High) and (ml is Low) 

 

Table 2 

Adjusting parameters of the inputs before optimization. 

 
Inputs Membership function a b c 

df Near 65 2.5 20 

 Far 65 2.5 150 

dl Near 65 2.5 20 

 Far 65 2.5 150 

dr Near 65 2.5 20 

 Far 65 2.5 150 

If (df  is Far) and (dl is Near) and (dr is Near) then (mr is Low) and (ml  is High)    

 

 
Fig. 4. The general structure of the generalized bell-shaped membership function. 

 

collision avoidance in an unknown static and dynamic environ- ment. The proposed controller controls the 

right motor velocity and left motor velocity of the mobile robot using sensory data inter- pretation. The T1-

SFLS controller has three inputs: Forward Obstacle Distance (df ), Left Forward Obstacle Distance (dl 
) and Right Forward Obstacle Distance (dr ); and two outputs: Right Motor Velocity (mr ) and 
Left Motor Velocity (ml ), which are logi- cally connected by eight rules (see Fig. 1). The T1-SFLS 

controller receives  inputs  (obstacle  distances)  from  the  front,  left,  and the right group of 
sensors of the robot, and output from T1-SFLS controller is right motor velocity and left motor 
velocity of the mobile robot. These sensors read the obstacle from 20 cm to 150 cm 
approximately. The input and output variables of the controller are 
 

Table 3 

Adjusting parameters of the outputs before optimization. 
Outputs Membership function a b c 

mr Low 5 2.5 6.7 

 High 5 2.5 16.7 

ml Low 5 2.5 6.7 

 High 5 2.5 16.7 

 

illustrated in Figs. 2 and 3, respectively. The fuzzy rule set of the T1- SFLS controller is described 

in Table 1. The two generalized bell- shaped (Gbell) membership functions are used for inputs 

and outputs. The range of inputs is divided into two linguistic variables: Near and Far. These 

inputs are located at 20 cme150 cm. Similarly, the two Gbell membership functions (MFs) Low 

and High respec- tively have been used for the outputs, and it is located at 6.7 cm/s to 



Optimum path planning of mobile robot in unknown static and dynamic environments .. 

www.ijceronline.com                                                Open Access Journal                                                   Page 5 

16.7 cm/s. The designed T1-SFLS controller is directly implemented in the mobile robot for 

simulations and experiments. The T1-SFLS controller is composed through Mamdani-type  fuzzy  

model  in  the following form 

 
where n ¼ 1, 2, …,8 (eight rules), the i ¼ 1, 2, j ¼ 1, 2 and k ¼ 1, 2 because df , dl and dr have two 

Gbell membership functions each. The df ðiÞ, dlðjÞ, and drðkÞ are the fuzzy sets of the inputs df , dl , 

and dr respectively. Similarly, the mrðijkÞ, and mlðijkÞ are the fuzzy sets of the 
outputs mr, and ml respectively. The fuzzy set (inputs and outputs) uses the following Gbell 
membership function. 
 

 
 

Fig. 5. Air parcels representation of the WDO algorithm. 

 
Let df , dl, and dr are presented by x1, x2, and x3 respectively. 

Similarly, mr, and ml are denoted by y1, and y2 respectively. 
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Fig. 5. Air parcels representation of the WDO algorithm. 
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III. FUZZY-WDO ALGORITHM FOR THE MOBILE ROBOT NAVIGATION 
WDO [16] algorithm is inspired by the earth's atmosphere, where the wind blows are trying to equalize 

the horizontal imbalance in the air pressure. WDO is a new type nature-inspired global optimization based on 

atmospheric motion developed by Bayraktar et al. [16] in 2013. This method is working on the population-

based iterative heuristic global optimization algorithmfor multi-dimensional and multi-modal problems with the 

poten-tial to implement constraints on the search domain. WDO is similar to other nature-inspired optimization 

algorithms, in which  population-based heuristic iterative process can be found for solving multi-dimensional 

optimization problems [18]. At its 

 

 
Fig. 7. Fuzzy membership functions for the outputs (mr , and ml ) after optimization. 

 

Table 4 

Adjusting parameters of the inputs after optimization. 
Inputs Membership function a b c 

df Near 55.11 2.14 25 

 Far 59.6 1.88 149.4 

dl Near 58.3 2.44 22.4 

 Far 62.41 1.76 148.3 

dr Near 57.42 2.33 23.1 

 Far 60.29 1.55 148.9 

 

Table 5 

Adjusting parameters of the outputs after optimization. 
Outputs Membership function a b c 

mr Low 3.61 2.601 6.515 

 High 4.22 2.14 16.2 

ml Low 3.97 2.21 5.96 

 High 4.32 2.96 16.4 

 

center, a population of infinitesimally small air parcels navigates over an N-dimensional search space, 

employing Newton's second law of motion that is used to express the motion of air parcels inside the 

earth's atmosphere. As compared to other particle based opti- mization algorithm (e.g., PSO), the WDO 

algorithm has additional terms in the velocity update equation such as Gravitation and Co- riolis forces, 

which provides robustness and extra degrees of freedom to the algorithm. 

The WDO algorithm is working based on the atmospheric mo- tion of infinitesimal small air parcels 

navigating over an N- dimensional search domain. The starting step of this algorithm is supported by 

the Newton's second law of motion, which provides accurate results when applied to the analysis of 

atmospheric mo- tion. It states that the total force applied on an air parcel causes it to accelerate with an 
acceleration a in the same direction as the applied total force. 

 

r$a ¼ 
X 

Fi (9) 

where r is the density of air for an infinitesimally small air parcel, and Fi represents all the individual forces 
acting on the air parcel. To relate the air pressure to the air parcel's density and temperature, the ideal gas 

law can be utilized and is given by 
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Fig. 8. Mobile robot navigation between the obstacles using (a) T1-SFLS and (b) Fuzzy- WDO 

controller. 

 

 
Fig. 9. Mobile robot navigation between the walls using (a) T1-SFLS and (b) Fuzzy- WDO controller. 

 

 
where P is the pressure, R is the universal gas constant, and T is the temperature. 

Four major forces can be included in equation (9) that either cause the wind to move in a 
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¼ 

¼ — 

cur 

certain direction at a certain velocity or that deflect it from its existing path. The most observable 
force causing the air to move is the pressure gradient force FPG defined in 
equation (11). Another force is the friction force FF defined in equation (12), which simply acts to 
oppose the motion started by the pressure gradient force. In our three-dimensional physical at- 
mosphere, the gravitational force FG in equation (13) is a vertical force directed toward the earth's 
surface. The Coriolis force FC in equation (14) is caused by due to the rotation of the earth and 
deflects the path of the wind from one dimension to another. 
 

 

 
where, VP is the pressure gradient, dV represents the infinite air volume, U represents the rotation of the earth, 
g is the gravitational acceleration, a is the friction coefficient and u is the velocity vector 

of the wind. 

The sum of all forces (gravitational force, pressure gradient force, friction force, and Coriolis force) described 

above can be entered on the right-hand side of Newton's second law of motion given in equation (9), which 

leads to 

 
 

where unew is the velocity in the next iteration, ucur is the velocity in current iteration, xcur is 

the current location of the air parcel, xopt is the optimum location of the air parcel, i represents 

the ranking between all air parcels, uother dim is the velocity influence from another randomly 

chosen dimension of the same air parcel, and all other   coefficients   are   combined   into   a   

single   term   c (i.e., 
c       2,U,RT ). Equation (17)  represents the final form of the ve- 
locity update utilized in WDO [16,19]. The following function up- dates the position of the air 

parcel 

xnew ¼ xcur þ ðunew$DtÞ (18) 

where xnew is the new position of the air parcel in the next iteration. If the new velocity unew 

exceeds the initialize maximum velocity (umax 0.3) in any dimension, then the velocity in that 

dimension is limited according to the following condition 
 

 

 

 
where the direction of motion is preserved but the magnitude is limited to be no more than umax 
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new j j 
at any dimension and u* rep- resents the adjusted velocity after it is limited to the maximum 

speed. 

The pseudo-code of the WDO algorithm can be summarized as follows: 

 
Step 1. Start. 

Step 2. Initialize the population size (i.e., group of air parcels), number of dimensions of the 

optimization problem, maximum number of iterations, coefficients (such as RT , g, a, c, umax), 

pressure function (fitness function of the optimization prob- lem), lower and upper boundaries 

of the optimization problem. 
 

 
Fig. 10. Mobile robot navigation in the dynamic environment using Fuzzy-WDO controller. 
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Fig. 12. Mobile robot navigation in an environment without obstacle using Fuzzy- WDO controller. 

 

 
 

Fig. 13. Mobile robot navigation in an environment with four obstacles using fuzzy controller [23]. 

 
Fig. 14. Mobile robot navigation in an environment with four obstacles using Fuzzy- WDO controller. 
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Fig. 15. Mobile robot navigation between many obstacles using fuzzy model [24]. 

 

 
Fig. 16. Mobile robot navigation between many obstacles using Fuzzy-WDO controller. 
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correct membership function grade [22]. Because of this problem, the WDO algorithm is used to 
tune the adjusting parameters of the inputs and outputs. From Section 2, two Gbell membership 

func- tion are considered for the inputs (df , dl, and dr) and outputs (mr ,  

and  ml). Each  Gbell membership  function has  three  adjusting pa- 

rameters (a, b, and c). Therefore, each input has six adjusting pa- rameters. Similarly, each output 

has six adjusting parameters. So the total number of adjusting parameters is to be thirty {5 (3 

inputs þ 2 outputs) × 2 (membership function) × 3 (adjusting parameters a, b, and c) ¼ 30}. 

The ranges of adjusting parameters are defined as [amin, amax] [bmin, bmax] and [cmin, cmax] 

respectively, for lower and the upper boundary of the WDO algorithm. The amin and amax are 

30 and 65 for the membership function of the inputs. The bmin and bmax are 1 and 3.5 for the 

membership function of the inputs. The parameters cmin and cmax are 20 and 150 for the 

membership function of inputs respectively. Similarly, the amin and amax are 2 and 5 for the 
membership function of outputs. The bmin and bmax are 1 and 3.5 for the membership function 

of the outputs. The parameters cmin and cmax are located at 6.7 and 16.7 for the membership 

function of outputs respectively. Fig. 5 shows the air parcels representation of  

 

 
Fig. 18. Real-time navigation of Khepera-III mobile robot between the obstacles using T1-SFLS 

and Fuzzy-WDO controller. 
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the WDO algorithm. The optimized membership functions of the inputs (df , dl, and dr ) and the 

outputs (mr, and ml) are shown in Figs. 6 and 7, respectively. The results of the adjusting 

parameters (a, b, and c) of the inputs and outputs after optimization are listed in Table 4 and 

Table 5, respectively. 

The most important step in applying the WDO algorithm is to select the fitness function, which is 

used to evaluate the optimum pressure of the air parcels. In during the optimization process, the 

combined root mean square errors (CRMSE) are used to evaluate the fitness of the fuzzy 
controller 

 

 
 

IV. SIMULATION RESULTS 
This section describes the successful simulation results using T1-SFLS and Fuzzy-WDO 

controllers in the various unknown static and dynamic environments. The simulations are conducted using 

the MATLAB software on the HP 3.40 GHz processor. Figs. 8 and 9 show the navigation result of the 

mobile robot between the ob- stacles and walls respectively, using the T1-SFLS and Fuzzy-WDO 

controller in the unknown environments. Similarly, Fig. 10 dem- onstrates the navigation of a mobile robot 

in an unknown envi- ronment with the presence of two dynamic obstacles using Fuzzy- WDO controller. It 

is assumed that the position of the start point and goal point are known. But the positions of all the 

obstacles in the environment are unknown for the robot. In the simulation re- sults, the green and red color 
trajectory indicates the path gener- ated by the T1-SFLS and Fuzzy-WDO controllers respectively. 

Simulation results show the Fuzzy-WDO controller gives smooth and optimal path compared to the T1-

SFLS controller. Table 6 shows the navigation path length and time taken by the robot us- ing the T1-

SFLS and Fuzzy-WDO controller in the various unknown environments. 

 

V. COMPARISON WITH PREVIOUS WORKS 
This section describes the computer simulation result compar- ison between the previous model 

[23] and proposed Fuzzy-WDO controller in the same path planning problems. In the article [23], the 

authors have used two simple fuzzy controllers such as tracking fuzzy logic control (TFLC) and obstacle 
avoidance fuzzy logic con- trol (OAFLC) without adjusting its membership function for mobile robot 

navigation. Figs. 11 and 12 show the mobile robot navigation in  the  same  environment without obstacle  

using  fuzzy controller 

[23] and proposed Fuzzy-WDO controller, respectively. Similarly, Figs. 13 and 14 present the 

path covered by the robot in the same environment with the four obstacles using fuzzy controllers [23] and 

proposed Fuzzy-WDO controller, respectively. From the simu- lation  figures,  it  can  be  seen  that  the  

proposed  Fuzzy-WDO 

 

Khepera-III mobile robot description 

The experiments are conducted using the Khepera-III mobile robot in unknown environments. 

The Khepera-III mobile robot has two wheels controlled by two DC servo motors and one caster wheel. 
The diameter and height of the robot are 13 cm and 7 cm respectively. The Khepera-III mobile robot is 

equipped with nine infrared proximity sensors and five ultrasonic sensors, as shown in Fig. 17. The 

Infrared proximity sensor reads obstacles up to 30 cm, and the ultrasonic sensor reads obstacles from 20 

cm to 4 m approximately. In this study, we have set the minimum and maximum velocity of Khepera -III 
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mobile robot between the 6.7e16.7 cm/s. 

 

Experiments 

In the experiments, the controllers are implemented in the Khepera-III mobile robot using HP 

laptop. The width and height of the experimental platform are 250 cm and 250 cm, respectively. Fig. 18 

and Fig. 19 shows the real-time navigation of the Khepera-III mobile robot in unknown environments 

with the obstacles and walls, respectively. In Fig. 18, the start position of the robot is (175, 
100) cm, and the position of the goal is (0, 200) cm. The starting angle between the robot and the goal is 

29.74○. Similarly, in Fig. 19, the start position of the robot is (50, 50) cm, and the goal position is (250, 

200) cm. The starting angle between the robot and the goal is 36.87○. In the experiments, it is assumed 
that the position of the start point and goal point are known, but the positions of all the obstacles in the 

environment are unknown for the robot. The T1- SFLS and Fuzzy-WDO controller generate the motor 

velocity con- trol command for obstacle avoidance using on-board sensor in- formation. The successful 

experimental results in the various unknown environments are shown below to verify the effective- ness of 

the T1-SFLS and Fuzzy-WDO controllers. Table 9 shows the experimental path length and time taken by 

the Khepera-III mobile robot to reach target using the T1-SFLS and Fuzzy-WDO controllers in the various 

unknown environments. Tables 10 and 11 present the traveling path length and navigation time comparison 

between the simulation and experimental results. In the comparison study be- tween the simulation and 
experiments, it is observed that some errors have been found, these happen due to slippage and friction 

during real time experiment. 

 

 
Fig. 19. Real-time navigation of Khepera-III mobile robot between the walls using T1-SFLS and 

Fuzzy-WDO controller. 
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VI. CONCLUSION 
In this article, the two methods T1-SFLS controller and the hybrid Fuzzy-WDO algorithm have 

been applied to the mobile robot navigation. A new population-based optimization algorithm, called Wind 

Driven Optimization (WDO) is used to optimize and set the antecedent and consequent parameters of the 
fuzzy controller. The proposed algorithms are successfully verified through simu- lations and real-time 

experiments in the different environments. Simulation and experimental results demonstrate the Fuzzy-

WDO controller provide better performance as compared to  the  T1-  SFLS controller. 

 

Table 9 

 
 

Table 10 

Traveling path lengths comparison between simulation and experimental results.  
Figure no. (Simulation 

and experimental res.) 

Controller Traveling path 

length 

/cm Error between simulation and 

experimental results % 

  Simulation result Experimental 

result 

 

Figs. 8 and 18 T1-SFLS 78.6 83.9 6.3 

 Fuzzy-WDO 74.4 78.2 4.86 

Figs. 9 and 19 T1-SFLS 103.7 111.3 6.82 

 Fuzzy-WDO 98.2 103.4 5.1 

 

Table 11 

Navigation time comparison between simulation and experimental results.  
Figure no. (Simulation and 

experimental res.) 

Controller Navigation time 

/s 

 Error between simulation and 

experimental results /% 

  Simulation 

result 

Experimental 

result 

 

Figs. 8 and 18 T1-SFLS 7.2 7.7 6.49 

 Fuzzy-WDO 6.9 7.3 5.47 

Figs. 9 and 19 T1-SFLS 9.1 9.7 6.18 

 Fuzzy-WDO 8.7 9.2 5.43 
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